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Abstract

By using the boundary-value Green-function technique
for the Takagi equations, it is possible to calculate the
normal absorption factor and weighted path length in
cylinders and spheres as double integrals in angular
coordinates of well defined functions. The results are
easy to implement for numerical computations. Exact
analytical expressions for both crystal geometries are
found in the limits of the Bragg angle 6,, — 0° and
6,, — 90°.

1. Introduction

In a previous paper (Thorkildsen & Larsen, 1998),
hereafier denoted TL, we have shown how to obtain
analytical expressions for the primary extinction factor in
cylindrical and spherical perfect crystals. The method,
which is based on the boundary-value Green-function
technique, is also applicable for calculating normal
absorption factors in finite sized crystals. This concept
involves entrance and exit surface integrations and is
thus a novel approach for obtaining the absorption
factors.

In the literature (Rouse et al., 1970; Dwiggens, 1972,
1975a,b), it has been shown how the normal absorption
factors in cylinders and spheres can be calculated by
performing a numerical volume integration over the
crystal in question. Similar techniques have also been
applied by several authors to calculate values for the
weighted path length for spherical crystals (Weber, 1969;
Flack & Vincent, 1978; Rigoult & Guidi-Morosini,
1980). More recently, Clark & Reid (1995) used a
method based on generation of Howells polyhedra
(Howells, 1950; de Meulenaer & Tompa, 1965) to
calculate path lengths in a 100-sided ‘polycylinder’ and a
74-sided ‘polysphere’. An overview of absorption-factor
calculations is given in ch. 6.3 of International Tables for
Crystallography, Volume C (Maslen, 1995).

All function definitions, in Mathematica code, are
available from the authors on request.

2. Absorption
2.1. General expressions

The generalized extinction factor, y, the attenuation
factor for the integrated power from a perfect crystal due
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to the combined effect of multiple scattering and
absorption, is defined in TL. The expression for a
cylindrical crystal ist

1
y=Q1/nsin26,)Y ¥ [dz

r m=nm'(¥) 0

x [ dyy[=sin(¥y, +6,,)] [ dyg sin(yg —6,,)
M(m) S(M)
X |G(¥s, Yaglm; ")|2

X exp[—pR(sin Y5 — sin ¥,,)/cos 6,]. 1)

This expansion can be used to calculate the normal
absorption factor, A4, by applying the zeroth-order
term for the boundary-value Green functions,
Gﬁo)(ws, Yy lm's r), in (1). For the regions which then
contribute,

GO(Ws, Yylm's ) = 1.

Thus, we have for the absorption factor

@

A=(/rsin20,)Y ¥ [dz

r m=m'(r) 0

x [ dyy[—sin(¥y +6,,)] [ dyg sin(yg —6,;)
M(m) S(m)
3)

x exp[—pR(sin g — sinyy,)/cos6,,].

The regions that have a non-vanishing zeroth-order term
are Iy, II; and Ip. I; contributes when 8,, < 45° only, cf.
Figs. 1 and 2. From the figures, we find that the
integrations can be organized in three terms as given in
Table 1. It is however possible to simplify the calcula-
tions by introducing new coordinates x’ and )’ as shown
in Fig. 3. By performing the double integration in x” and
¥, the number of integrations is reduced from three to
one. The range of integrations in the new coordinates is
the same for both 0 < 6, < n/4 and n/4 < 6,, < 7/2.
Thus, one setup applies in the whole 6,, range (0, 7/2).
With v %2122 we have the transformations:

X = V(Y — ¥s)
Y =Yy + s — 2(m — 6,,)]
1 Notations and symbols are defined in TL.
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with an inverse:
Ys=w/ —x)+m—6,.
The Jacobian of this transformation is 1. The setup is
further simplified by introducing x = vx’ and y = vy,
which finally leads to
sin(Wy +0,,) = —sin(x +)
sin(yg — 6,4) = sin(x — y + 26,;)
sin g — sin ¥, = 2sinxcos(y — 6,,)
dyrs dy, = 2dvdy.

The transition to a sphere involves a z integration, which
can be performed as follows: T

fldz 3(1 — 2)exp[—a(l — )]
0
n/2

=3 { dy sin® g exp(—asin ¢)
oo /2
= %gﬂ[(— 1)"/nlla" uf dg sin**" ¢
=,F[2, (.3, a*/4] — On/4a)(a) — (3m/4)]5(a),
“4)

where

a = uR(sinyrg — sinyry ) /cos b,
= 2uR[sinx cos(y — 6,,)]/cos b,,,

oF, 1s a generalized hypergeometric function and /, is a
t The function f(z) = }(1 — %) is the shape function defined in TL.

n+8,

n-0,

¥

by,
-0y -4,

Fig. 1. Contributing fields to zeroth order. s = 1 or 0 < 6, < 45°,

A+, w,
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modified Bessel function of order n (Abramowitz &
Stegun, 1965).

The formula for the absorption factor is then in general
written

A(uR.6,,) = (2/nsin26,,)

28‘,;, !!'—29‘,”
x [y [ dvh(uR.0,, %), (5)
0 0
n+Gy
s
Iy
n=thy
i,
9, I
n-6, n+fy, 2n-6,

Py

Fig. 2. Contributing fields to zeroth order. An example for 6,, > 45°
where the region I, does not exist on the exit surface. Here s = 6 or
75 =<6, <77.14.

"+,

LN

T

Fig. 3. Defining new coordinates x’ and y' to simplify the integrations.
The shaded area shows the actual region of integration.
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Table 1. Surface integrations, limits in s and Ys for calculating the absorption factor

o Yu Vs
(0, 7/4) (= 8,4, T+ 6,5) (=¥ +2m — 26,4, ¥y)
(T+ 0,1, 27 =36,) (=Y + 2 — 26,5, — Yy, + 27+ 26,,)
2m — 36,27 -4, (Y —2m+46,,, =Yy + 27+ 26,,)

(/4,7/2) (w — 6,4, 2w — 36,;) (=¥ + 21 =26, ¥uy)
(2m —36,,, t+6,,) (Y — 2 + 46, ¥uy)
(r+86,, 2w —6,,) (Yyy —2m+46,,, —¥, + 27+ 26,,)

where the function 4 in the case of a cylinder is defined We find:

by
A%n=0"(p = 2R
h = hC(MR, 9oh,X,)’) ’ :0 g ) » /2
Hoin(x+y)sinGc—y+28,)exp(—a)  (§) = LI/l {(3/ ”)< [ desin™ ")
and for the sphere: < ( [dy sin®*? y)}
h = h(uR,0,, x,y) 0

. A%=(h = 4uR)
sine + y) sin(x — y + 26,0 F[2, G, 3), 2/4]

Io'e) /2
_ On/4a)ly(a) — (/4 (a)). @ =Y+ 1)!]b"{(3/n)( T desin®? x)
n=0 0
2.2. Absorption in the limits 0,,— 0 and 8,,— /2 x (7dy sin®t2) y) ]
0

When 6, — 0, we have ¥, + ¥ =2m. A close
examination of the three terms in the surface integrals in ) . ]
Table 1 reveals that it is only the second term that Using Mathematica (Wolfram, 1991), we then obtain

contributes to the absorption factor in this limit. We findt ~¢losed expressions for the absorption factors in the two
limiting cases:

A6, = 0) = (2/) [ d,, sin? _2uRsin ).
0= 0) = @) [ S0 U ORIy e

®) X 1F; 2,69, (uRY] (10)
- In the limit 6,, — 7/2, it is still only the second term that  4%+=%"(yR) = [I,(4uR)/2uR] — (16uR/37)
contributes. We have:
) x 1 Fy[1, G, ), 4(uR)’] (11)
A0, =1/2)=(2 dy,, sin® 1/4uR si
O, =1/2) (/7[){ Y sin” Yy {(1 /4R sin vry,) while
x [1 — exp(—4uR sin y¥,,)]}. ) o e , R
Usi Tav] . . fih dal AP (UR) = [3/4(uR)" {1 — [1 4 2R + 2(R)°]
sing a Taylor-series expansion of the exponentials, we _
get: s x exp(—2uR)} 3 (12)
R A= R) = [3/64 exp(4uR)(uR) {1 — 4R
A= (b = 2uR) (1R) = [3/64 exp(4uR)(R)"| ZCXP( HR)
+ 41R + 8exp(4uR)(LR)"}. (13)

o0 n
= i fesm fo s, |
"°=° 0 The last two results are identical to those presented in
A= (b = 4uR) International Tables for Crystallography, Volume C, by

o n Maslen (1995).
= 21D+ 1)!1b”{(2/n) [dy sin<"+”y}.
n=0 0
These results can easily be generalized to a sphere using 3. Absorption-weighted path lengths
the same procedure for the z integration that led to (4). 3.1, Resulss for a cylinder

 A_is here used for the absorption factor for the cylinder, A, for the The absorptlon-.weighte(.l pa!:h lquth, T w which enters
sphere. into some analysis of extinction, is defined as follows
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(Zachariasen, 1968; Becker & Coppens, 1974):

T, = —(1/4)(34/3u). (14)
Using the definition of %, (6), it follows that
Z _ ! fzao,, dy fo % dxh (UR, B, X, ) (15)
R~ R [P gy [T Gy b (4R, 0, x, )
with
h, & sin(x + y) sin(x — y + 26,,) aexp(—a).  (16)

In the limiting cases, we have:

8,=0°b=2uR:

Ty _, Lol (= 1)/l (f7 dysin®*"y)

R TR (=1 /nlbr(fy dysin®™ y)
—9nLy(b) — 3mbLy(b) + 4b \F,[2, (, 3), b2 /4]
3nl,(b) + 3nbl,(b) — 4b2,F,[2, (2,2) b2/4]

a7

6,, =90°, b =4uR:

Ty _ 4Tl L/ + Dnllo (7 dysin® )
R TR/ D[ dysin®™ y)
=3nL(b) + 2b ,F,[1, (. 3), b? /4]

=4 3L, (b) — 267, Fy[1, G, 3), 62/4] (18)

3.2. Results for a sphere

The transition to a sphere will now involve the z
integration:

[ dz(l — 2P expl—a(l — )7
0

= nfz dgsin* ¢ exp(—a sin ¢)
= (1/a){—(8a*/15),F,[3, ¢, D), a*/4]

+ (37/2a))(a) + 3nly(a) + (ma/2)[,(a)}.  (19)

We may then formally write the weighted path length as
in (15):

Ty _ 1 fody fi~ "™ dehy(uR, Oy ,) 20)
R l,Lszeﬂh d ”—29‘7[: dxh (lJ;R h’x,y)

with the function 4, defined by

izsdgsin(x + y)sin(x — y +26,,)
x (—$a* 1 F,[3, 3,9, a* /4] + (9n/4)(1/a)]y(a)

+ On/2)(a) + Br/4al(a)}. 21
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In the limiting cases, we now obtain:
0, =0°b=2uR:
n/2
T,/R=2 Z[( 1" /n']b"[ [ & sm‘“"’y]
0
X [f dysin®*” ]} Y [(=1)"/ne"
0 n=0
/2 b3 -1
x [ [ dysin®*" y][ [ dysin®™ y]}
0 0
_ 172 4 1p3 _
61 —(1+b+3b*+;b°)exp(—b) 22)

~b 1-(1+b+ib?) exp(—b)

6,, = 90°, b = 4uR:

_ 00 n/2

T,/R= 4{ S(=D"/(n + 2)n!]b"[ [ dysin“* y]
n=0 0

n
x [ [ dysin®*"
0

7/2 -1
X [ [ dysin®*™ ][ [ dysin®*" y:“
0

2F[(2,4), (3, 5), —b]
3= (/691 = (1 + b)exp(=b)]’

y] }[ SN 1)/ + D1

n=0

=2 @3)

The closed expressions have been obtained using Maple
(Char et al., 1991a,b) and are equivalent to those found
by Rigoult & Guidi-Morosini (1980).

4. Conclusions

Analytical formulas for the normal absorption factors and
weighted path lengths in perfect crystals in the shape of a
cylinder and a sphere have been developed based on the
concept of a generalized extinction factor.

By applying the formulas for the absorption factors,
we have calculated numerical values for the absorption
correction 4*. The tabulated values given by Maslen
(1995, Tables 6.3.3.2 and 6.3.3.3) are all within £0.03%
of our results. We find larger discrepancies when it comes
to weighted path lengths for a sphere, ¢f Table 6.3.3.4
given by Maslen. For most of the tabulated values, the
deviations are within +0.001. However, for uR = 2.5, we
find deviations within the range (—0.009, 0.018). Our
results for the weighted path lengths in a cylinder (uR =
1) are in perfect agreement with those given in Table 3 of
Clark & Reid (1995).
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